Developing recommender systems with the consideration of product profitability for sellers
نویسندگان
چکیده
In electronic commerce web sites, recommender systems are popularly being employed to help customers in selecting suitable products to meet their personal needs. These systems learn about user preferences over time and automatically suggest products that fit the learned model of user preferences. Traditionally, recommendations are provided to customers depending on purchase probability and customers’ preferences, without considering the profitability factor for sellers. This study attempts to integrate the profitability factor into the traditional recommender systems. Based on this consideration, we propose two profitability-based recommender systems called CPPRS (Convenience plus Profitability Perspective Recommender System) and HPRS (Hybrid Perspective Recommender System). Moreover, comparisons between our proposed systems (considering both purchase probability and profitability) and traditional systems (emphasizing an individual’s preference) are made to clarify the advantages and disadvantages of these systems in terms of recommendation accuracy and/or profit from cross-selling. The experimental results show that the proposed HPRS can increase profit from crossselling without losing recommendation accuracy. 2007 Elsevier Inc. All rights reserved.
منابع مشابه
An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms
With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...
متن کاملImproving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data
The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...
متن کاملOptimal Decisions in a Dual-channel Supply Chain for the Substitute Products with the Special Orders under DisruptionRisk and Brand Consideration
In this paper, a three-echelon supply chain , including two producers, distributor and retailer who produce products in different brands have been considered. Any manufacturer, has a separate channel and the exclusive retailer offers their products, which have been prepared from the distributor (exclusive market) with discount or other manufacturer. In this paper pricing decisions on substitute...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 178 شماره
صفحات -
تاریخ انتشار 2008